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Many applications of interest to DOE involve mathematically rigorous uncertainty quantification (UQ)
methodologies for the estimation and representation of numerical, modeling, and physical uncertainties,
the propagation of aleatory and epistemic uncertainties through a model, the solution of inverse problems,
and decision making. For example, consider applications involving multiphase flows, such as combustion,
pyroloysis, gasification, carbon capture, and chemical vapor deposition processes [14, 25]. The solutions of
multiple equations for reacting flows are both computationally time and memory intensive [6, 11, 15, 24, 25].
The complex physical and chemical phenomena are not well understood, and are subject to considerable un-
certainties. Estimating and modeling these uncertainties is essential for predicting quantities of interest such
as the percentage of captured carbon, and for solving inverse problems such as parameter calibration using
data, optimal design, and optimal control. However, performing UQ further increases the computational and
memory demands of already very large simulations.

Current UQ approaches face considerable challenges at extreme scales. Approaches based on discretiz-
ing the probabilistic dimension, e.g., polynomial chaos, suffer from the curse of dimensionality. Markov
chain Monte Carlo (MCMC) methods in large dimensional state spaces typically require extensive sampling
of system response. The mix of aleatory and epistemic uncertainties is compounded by inherent (and
frequent) system errors for various high performance computing architectures.

At the same time, the nature of UQ methodologies presents unique mathematical opportunities for
achieving high end scalability and resiliency. Specifically, the effect of software and hardware errors can
be handled algorithmically in the same statistical framework as other uncertainties, thus becoming part of a
comprehensive and resilient approach to UQ. The key idea to achieve scalability is to develop essentially lo-
cal algorithms that reveal and exploit extreme levels of concurrency between different subdomains, physical
processes, independent model samples, scales, reduced order models, and levels of complexity. Essentially
local methods reduce the need for expensive distant communication and can efficiently leverage complex
memory hierarchies and heterogeneous nodes. New algorithms must be asynchronous, using delayed remote
information, and resilient to incomplete information and hardware failures.

We discuss several areas where future mathematical innovation is the key to enabling successful UQ at
the exascale: sampling strategies, linear and nonlinear solvers, local model reduction, and model validation.

Sampling strategies at the extreme scale. A promising uncertainty propagation approach is based on
probability bounds analysis [7–9], which involves segregated propagation of probabilistic (i.e., aleatory)
and interval (i.e., epistemic) parameters. In this approach, the outer loop must employ sampling, while the
inner loop can employ various uncertainty propagation approaches [19]. Other methods for propagating both
aleatory and epistemic uncertainty include evidence theory [21] and fuzzy set theory [17]. The widely used
MCMC methods to sample the posterior distribution of uncertain parameters generally converge slowly,
and the outlook worsens considerably if output response statistics are needed for a wide variety of distinct
dynamic inputs. New MCMC strategies are needed that use only local information for the proposal proba-
bility densities and use delayed and incomplete remote information from other subsystems in order to decide
acceptance/rejection.
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Extreme-scale solvers. For the numerical algorithms and mathematical software underpinning UQ, no-
where are the exascale challenges more daunting than for solvers of linear and nonlinear systems of equa-
tions. New multilevel preconditioners, Krylov subspace, and multigrid methods are needed that maintain
the essential components for fast convergence, but drastically reduce the communication costs. The new
algorithms need to exploit smoothness, randomized algorithms, compression, model reduction, and asyn-
chronous computations with multilevel communication to combine increased levels of local computations
with carefully balanced, asynchronous global computations and minimized, multilevel global communica-
tion [13]. Promising scalable nonlinear solvers include homotopy methods (e.g., [23]), nonlinear Gauss-
Seidel variants and asynchronous fixed point iteration, nonlinear multigrid, and quasi-Newton-like approx-
imations. Important aspects will be new theory for the use of basis functions of almost locally supported
translates, reduced accuracy/power subcomputations, and stochastic solver components.

Local model reduction. For extremely large models, the computational burden of MCMC can be ad-
dressed in part by strategically using approaches that utilize efficient, high-fidelity, reduced-order models
(ROMs) during the creation of statistical ensembles. This use of ROMs as low cost surrogates for sampling
of the system response has been well-studied[10], although even for modestly large problems the naive use
of model surrogates may distort the derived posterior QoI distributions [16]. For extremely large models,
the usual model reduction approaches inevitably require heavy memory traffic, moving widely distributed
data across several processors. Deploying the final (global) reduced model as a surrogate for a model having
a widely distributed interface with other systems also requires significant data motion and so is likely to
create performance limitations in exascale settings. In order to retain the advantages that model reduction
can provide for computational problems of this scale, one must rethink the way reduced models are both
constructed and employed. Instead of trying to capture the underlying large-scale complex dynamics with
a single (global) reduced model as is typically done, we are exploring the construction of local reduced
models that model local dynamics, exchange information only with neighbors, yet in aggregate are able to
encode the fine grain structure of the dynamic response across multiple resolution scales. Construction
and adjustment of local models utilize observed system response at the various observed scales, combining
POD methods [5] with response information derived from known or surmised system structure [3, 12].
Interpolatory model reduction methods are well developed and may be flexibly deployed in such settings
[1, 4]. These methods have the flexibility to allow creation of ROMs that function as unbiased estimators of
QoIs [2].

Model validation. Model validation is the assessment of a model response relative to experimental data
[18]. The recently developed method of manufactured universes (MMU) provides a framework for the
rigorous assessment of model form uncertainty [22]. MMU involves the generation of a manufactured
reality, or universe, from which experimental observations can be made in the presence of experimental
measurements errors in both the model inputs and the outputs. A simplified model of the system is then
applied to this universe, including the propagation of input uncertainty and possibly numerical solution
errors. Since the true behavior of reality is known in this manufactured universe, the exact evaluation
of modeling errors can be performed. This approach could be used to compare and contrast different
approaches for both estimating structural model uncertainty and calibrating (i.e., updating) the model in
the presence of random experimental measurement error, experimental bias errors, modeling errors, and
uncertainties (both random and those due to lack of knowledge) in the model inputs. This approach could
also be used to quantify additional uncertainties that are introduced by extrapolating the model uncertainty
to conditions where no experimental data are available [20], for example, from laboratory scale to industrial
scale.
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